Dan Janies

Biomedical Informatics Ohio State

Comparative Genomics of Pathogens

janies-1@medctr.osu.edu

Examples: Phylogeny of SARS associated Coronaviruses

Software:

Intersection-exclusion analysis on trees

Hardware-software synergy:
Very fast multiple alignment and tree search in self-built parallel computing clusters

Host Switching Among Coronaviruses e.g. SARS Based on whole genome analysis

Intersection-Exclusion Analysis on database of character change implied by trees.

Shared changes in origin of SARS CoV in humans and subsequent infection of small carnivores

osition	locus	function	anc	des	change
1893	nsp2-pp1a/pp1ab	two-proteases	Α	C	Tv
1893	nsp2-pp1a/pp1ab	involved in transcriptional regula	t G	T	Tv
3310	nsp3-pp1a/pp1ab	coronavirus-host interactions	G	C	Tv
3310	nsp3-pp1a/pp1ab		Т	C	Ti
6440	nsp3-pp1a/pp1ab		A	G	Ti
6440	nsp3-pp1a/pp1ab		G	T	Tv
22172	glycosylation site of Spike Prote	erecognition of host cell receptor	C	Α	Tv
22172	glycosylation site of Spike Prote	ein	K		Del
22951	Spike Protein		C	G	Tv
22951	Spike Protein		Υ		Del
23310	Spike Protein		В	C	ABC
23310	Spike Protein		T	C	Ti
25508	hypothetical protein sars3a		K		Del
25508	hypothetical protein sars3a		T	Α	Tv
25544	hypothetical protein sars3a		C	T	Ti
25544	hypothetical protein sars3a		R	Α	ABC
25844	hypothetical protein sars3a		В	G	ABC
25844	hypothetical protein sars3a		W	Α	ABC

Tree search is a NP-complete problem

Given
$$j = 3$$

$$i = 3$$

Heuristic Search Strategies

Monte Carlo random tree building

Hill climbing branch swapping

Simulated annealing ratcheting

Genetic algorithms tree fusion

564 processor self-built cluster. 9th fastest cluster in the world 6/2001

Networks explode the cost

Ranking in June 2001by clusters.top500.org

Parallel building

High ratio of communication to computation

Multi building

Low ratio of communication to computation

Tree-based alignment:

speedup and granularity

log 2 number of slave processors

More than just trees:

- -Database of ancestor descendant changes
- -Tools to search for Independently evolved genomic changes among diverse pathogens to provide well corroborated arguments for regions that confer pathogenicity or transmissibility
- -Scalable and economic approaches to large datasets
 - -Sequencing coronaviruses before, during, and after host shifts